Technology and society

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Technology society and life or technology and culture refers to dependency co-dependence, co-influence, and co-production of technology and society upon the other (technology upon culture, and vice versa). This synergistic relationship occurred from the dawn of humankind, with the invention of simple tools and continues into modern technologies such as the printing press and computers. The academic discipline studying the impacts of science, technology, and society, and vice versa is called science and technology studies.

The simplest form of technology is the development and use of basic tools. The prehistoric discovery of how to control fire and the later Neolithic Revolution increased the available sources of food, and the invention of the wheel helped humans to travel in and control their environment. Developments in historic times, including the printing press, the telephone, and the Internet, have lessened physical barriers to communication and allowed humans to interact freely on a global scale.

Technology has many effects. It has helped develop more advanced economies (including today's global economy) and has allowed the rise of a leisure class. Many technological processes produce unwanted by-products known as pollution and deplete natural resources to the detriment of Earth's environment. Innovations have always influenced the values of a society and raised new questions in the ethics of technology. Examples include the rise of the notion of efficiency in terms of human productivity, and the challenges of bioethics.

Philosophical debates have arisen over the use of technology, with disagreements over whether technology improves the human condition or worsens it. Neo-Luddism, anarcho-primitivism, and similar reactionary movements criticize the pervasiveness of technology, arguing that it harms the environment and alienates people; proponents of ideologies such as transhumanism and techno-progressivism view continued technological progress as beneficial to society and the human condition.

Pre-historical[edit]

The importance of stone tools, circa 2.5 million years ago, is considered fundamental in the human development in the hunting hypothesis.

Primatologist, Richard Wrangham, theorizes that the control of fire by early humans and the associated development of cooking was the spark that radically changed human evolution.[1] Texts such as Guns, Germs, and Steel suggest that early advances in plant agriculture and husbandry fundamentally shifted the way that collective groups of individuals, and eventually societies, developed.

Modern examples and effects[edit]

Technology has become a huge part in society and day-to-day life. When societies know more about the development in a technology, they become able to take advantage of it. When an innovation achieves a certain point after it has been presented and promoted, this technology becomes part of the society. The use of technology in education provides students with technology literacy, information literacy, capacity for life-long learning and other skills necessary for the 21st century workplace. [2] Digital technology has entered each process and activity made by the social system. In fact, it constructed another worldwide communication system in addition to its origin.[3]

A 1982 study by The New York Times described a technology assessment study by the Institute for the Future, "peering into the future of an electronic world." The study focused on the emerging videotex industry, formed by the marriage of two older technologies, communications and computing. It estimated that 40 percent of American households will have two-way videotex service by the end of the century. By comparison, it took television 16 years to penetrate 90 percent of households from the time commercial service was begun.

Since the creation of computers achieved an entire better approach to transmit and store data. Digital technology became commonly used for downloading music and watching movies at home either by DVDs or purchasing it online. Digital music records are not quite the same as traditional recording media. Obviously, because digital ones are reproducible, portable and free.[4]

Around the globe many schools have implemented educational technology in primary schools, universities and colleges. According to the statistics, in the early beginnings of 1990s the use of Internet in schools was, on average, 2–3%.[citation needed] Continuously, by the end of 1990s the evolution of technology increases rapidly and reaches to 60%, and by the year of 2008 nearly 100% of schools use Internet on educational form. According to ISTE researchers, technological improvements can lead to numerous achievements in classrooms. E-learning system, collaboration of students on project based learning, and technological skills for future results in motivation of students.[citation needed]

Although these previous examples only show a few of the positive aspects of technology in society, there are negative side effects as well.[5] Within this virtual realm, social media platforms such as Instagram, Facebook, and Snapchat have altered the way Generation Y culture is understanding the world and thus how they view themselves. In recent years, there has been more research on the development of social media depression in users of sites like these. "Facebook Depression" is when users are so affected by their friends' posts and lives that their own jealousy depletes their sense of self-worth. They compare themselves to the posts made by their peers and feel unworthy or monotonous because they feel like their lives are not nearly as exciting as the lives of others.[2]

Another instance of the negative effects of technology in society, is how quickly it is pushing younger generations into maturity. With the world at their fingertips, children can learn anything they wish to. But with the uncensored sources from the internet, without proper supervision, children can be exposed to explicit material at inappropriate ages.[6] This comes in the forms of premature interests in experimenting with makeup or opening an email account or social media page—all of which can become a window for predators and other dangerous entities that threaten a child's innocence. Technology has a serious effect on youth's health. The overuse of technology is said to be associated with sleep deprivation which is linked to obesity and poor academic performance in the lives of adolescents.[7]

Economics and technological development[edit]

Nuclear reactor, Doel, Belgium

In ancient history, economics began when spontaneous exchange of goods and services was replaced over time by deliberate trade structures. Makers of arrowheads, for example, might have realized they could do better by concentrating on making arrowheads and barter for other needs. Regardless of goods and services bartered, some amount of technology was involved—if no more than in the making of shell and bead jewelry. Even the shaman's potions and sacred objects can be said to have involved some technology. So, from the very beginnings, technology can be said to have spurred the development of more elaborate economies. Technology is seen as primary source in economic development.[8]

Technology advancement and economic growth are related to each other. The level of technology is important to determine the economic growth. It is the technological process which keeps the economy moving.

In the modern world, superior technologies, resources, geography, and history give rise to robust economies; and in a well-functioning, robust economy, economic excess naturally flows into greater use of technology. Moreover, because technology is such an inseparable part of human society, especially in its economic aspects, funding sources for (new) technological endeavors are virtually illimitable. However, while in the beginning, technological investment involved little more than the time, efforts, and skills of one or a few men, today, such investment may involve the collective labor and skills of many millions.

Funding[edit]

Consequently, the sources of funding for large technological efforts have dramatically narrowed, since few have ready access to the collective labor of a whole society, or even a large part. It is conventional to divide up funding sources into governmental (involving whole, or nearly whole, social enterprises) and private (involving more limited, but generally more sharply focused) business or individual enterprises.

Government funding for new technology[edit]

The government is a major contributor to the development of new technology in many ways. In the United States alone, many government agencies specifically invest billions of dollars in new technology.

[In 1980, the UK government invested just over six million pounds in a four-year program, later extended to six years, called the Microelectronics Education Programme (MEP), which was intended to give every school in Britain at least one computer, software, training materials, and extensive teacher training. Similar programs have been instituted by governments around the world.]

Technology has frequently been driven by the military, with many modern applications developed for the military before they were adapted for civilian use. However, this has always been a two-way flow, with industry often developing and adopting a technology only later adopted by the military.

Entire government agencies are specifically dedicated to research, such as America's National Science Foundation, the United Kingdom's scientific research institutes, America's Small Business Innovative Research effort. Many other government agencies dedicate a major portion of their budget to research and development.

Private funding[edit]

Research and development is one of the smallest areas of investments made by corporations toward new and innovative technology.

Many foundations and other nonprofit organizations contribute to the development of technology. In the OECD, about two-thirds of research and development in scientific and technical fields is carried out by industry, and 98 percent and 10 percent, respectively, by universities and government. But in poorer countries such as Portugal and Mexico the industry contribution is significantly less. The U.S. government spends more than other countries on military research and development, although the proportion has fallen from about 30 percent in the 1980s to less than 10 percent.[9]

The 2009 founding of Kickstarter allows individuals to receive funding via crowdsourcing for many technology related products including both new physical creations as well as documentaries, films, and webseries that focus on technology management. This circumvents the corporate or government oversight most inventors and artists struggle against but leaves the accountability of the project completely with the individual receiving the funds.

Other economic considerations[edit]

Sociological factors and effects[edit]

Values[edit]

The implementation of technology influences the values of a society by changing expectations and realities. The implementation of technology is also influenced by values. There are (at least) three major, interrelated values that inform, and are informed by, technological innovations:

  • Mechanistic world view: Viewing the universe as a collection of parts (like a machine), that can be individually analyzed and understood.[10] This is a form of reductionism that is rare nowadays. However, the "neo-mechanistic world view" holds that nothing in the universe cannot be understood by the human intellect. Also, while all things are greater than the sum of their parts (e.g., even if we consider nothing more than the information involved in their combination), in principle, even this excess must eventually be understood by human intelligence. That is, no divine or vital principle or essence is involved.
  • Efficiency: A value, originally applied only to machines, but now applied to all aspects of society, so that each element is expected to attain a higher and higher percentage of its maximal possible performance, output, or ability.
  • Social progress: The belief that there is such a thing as social progress, and that, in the main, it is beneficent. Before the Industrial Revolution, and the subsequent explosion of technology, almost all societies believed in a cyclical theory of social movement and, indeed, of all history and the universe. This was, obviously, based on the cyclicity of the seasons, and an agricultural economy's and society's strong ties to that cyclicity. Since much of the world is closer to their agricultural roots, they are still much more amenable to cyclicity than progress in history. This may be seen, for example, in Prabhat Rainjan Sarkar's modern social cycles theory.[11] For a more westernized version of social cyclicity, see Generations: The History of America's Future, 1584 to 2069 (Paperback) by Neil Howe and William Strauss; Harper Perennial; Reprint edition (September 30, 1992); ISBN 0-688-11912-3, and subsequent books by these authors.

Institutions and groups[edit]

Technology often enables organizational and bureaucratic group structures that otherwise and heretofore were simply not possible. Examples of this might include:

  • The rise of very large organizations: e.g., governments, the military, health and social welfare institutions, supranational corporations.
  • The commercialization of leisure: sports events, products, etc. (McGinn)
  • The almost instantaneous dispersal of information (especially news) and entertainment around the world.

International[edit]

Technology enables greater knowledge of international issues, values, and cultures. Due mostly to mass transportation and mass media, the world seems to be a much smaller place, due to the following:[citation needed]

  • Globalization of ideas
  • Embeddedness of values
  • Population growth and control

Environment[edit]

Technology provides an understanding, and an appreciation for the world around us.

Most modern technological processes produce unwanted by products in addition to the desired products, which is known as industrial waste and pollution. While most material waste is re-used in the industrial process, many forms are released into the environment, with negative environmental side effects, such as pollution and lack of sustainability. Different social and political systems establish different balances between the value they place on additional goods versus the disvalues of waste products and pollution. Some technologies are designed specifically with the environment in mind, but most are designed first for economic or ergonomic effects. Historically, the value of a clean environment and more efficient productive processes has been the result of an increase in the wealth of society, because once people are able to provide for their basic needs, they are able to focus on less tangible goods such as clean air and water.

The effects of technology on the environment are both obvious and subtle. The more obvious effects include the depletion of nonrenewable natural resources (such as petroleum, coal, ores), and the added pollution of air, water, and land. The more subtle effects include debates over long-term effects (e.g., global warming, deforestation, natural habitat destruction, coastal wetland loss.)

Each wave of technology creates a set of waste previously unknown by humans: toxic waste, radioactive waste, electronic waste.

One of the main problems is the lack of an effective way to remove these pollutants on a large scale expediently. In nature, organisms "recycle" the wastes of other organisms, for example, plants produce oxygen as a by-product of photosynthesis, oxygen-breathing organisms use oxygen to metabolize food, producing carbon dioxide as a by-product, which plants use in a process to make sugar, with oxygen as a waste in the first place. No such mechanism exists for the removal of technological wastes.

Construction and shaping[edit]

Choice[edit]

Society also controls technology through the choices it makes. These choices not only include consumer demands; they also include:

  • the channels of distribution, how do products go from raw materials to consumption to disposal;
  • the cultural beliefs regarding style, freedom of choice, consumerism, materialism, etc.;
  • the economic values we place on the environment, individual wealth, government control, capitalism, etc.

According to Williams and Edge,[12] the construction and shaping of technology includes the concept of choice (and not necessarily conscious choice). Choice is inherent in both the design of individual artifacts and systems, and in the making of those artifacts and systems.

The idea here is that a single technology may not emerge from the unfolding of a predetermined logic or a single determinant, technology could be a garden of forking paths, with different paths potentially leading to different technological outcomes. This is a position that has been developed in detail by Judy Wajcman. Therefore, choices could have differing implications for society and for particular social groups.

Autonomous technology[edit]

In one line of thought, technology develops autonomously, in other words, technology seems to feed on itself, moving forward with a force irresistible by humans. To these individuals, technology is "inherently dynamic and self-augmenting."[13]

Jacques Ellul is one proponent of the irresistibleness of technology to humans. He espouses the idea that humanity cannot resist the temptation of expanding our knowledge and our technological abilities. However, he does not believe that this seeming autonomy of technology is inherent. But the perceived autonomy is because humans do not adequately consider the responsibility that is inherent in technological processes.

Langdon Winner critiques the idea that technological evolution is essentially beyond the control of individuals or society in his book Autonomous Technology. He argues instead that the apparent autonomy of technology is a result of "technological somnambulism," the tendency of people to uncritically and unreflectively embrace and utilize new technologies without regard for their broader social and political effects.

In 1980, Mike Cooley published a critique of the automation and computerisation of engineering work under the title "Architect or Bee? The human/technology relationship". The title alludes to a comparison made by Karl Marx, on the issue of the creative achievements of human imaginative power.[14] According to Cooley ""Scientific and technological developments have invariably proved to be double-edged. They produced the beauty of Venice and the hideousness of Chernobyl; the caring therapies of Rontgen's X-rays and the destruction of Hiroshima," [15]

Government[edit]

Individuals rely on governmental assistance to control the side effects and negative consequences of technology.

  • Supposed independence of government. An assumption commonly made about the government is that their governance role is neutral or independent. However, some argue that governing is a political process, so government will be influenced by political winds of influence. In addition, because government provides much of the funding for technological research and development, it has a vested interest in certain outcomes. Other point out that the world's biggest ecological disasters, such as the Aral Sea, Chernobyl, and Lake Karachay have been caused by government projects, which are not accountable to consumers.
  • Liability. One means for controlling technology is to place responsibility for the harm with the agent causing the harm. Government can allow more or less legal liability to fall to the organizations or individuals responsible for damages.
  • Legislation. A source of controversy is the role of industry versus that of government in maintaining a clean environment. While it is generally agreed that industry needs to be held responsible when pollution harms other people, there is disagreement over whether this should be prevented by legislation or civil courts, and whether ecological systems as such should be protected from harm by governments.

Recently, the social shaping of technology has had new influence in the fields of e-science and e-social science in the United Kingdom, which has made centers focusing on the social shaping of science and technology a central part of their funding programs.

Conclusion[edit]

A society have different definitions according to the political and sociological point of view but both agree that a society is formed when people live at a place and connect to each other.[2] Being social is very important In today's technological time when everyone is busy to benefit themself by using the new advanced technology. The demand of increase in technology have not affected our relationship to the society but have changed the way of us being social. This new connection that has build up is known as society and technology or sociotechnology.[16] Society and technology is the main source for to connect to other peoples in the world. If we took an example of animals they are not connected to animals from a different area because they don't use the knowledge to improve their ability to create new technologies. To improve the technology knowledge and financial support is very important. Technological advancement is allowing our scientists to do research and save thousands of lifes by finding the cure for dangerous diseases and this will not stop. Technology will advance lifestyle will improve and the connection of society and technology will be stronger. Technology is also playing an important role improve our environment to provide healthy lifestyle to people belong to the society. such as improvement is farming, industry, renewable energy, clean air, sewer treatment and solid waste management. Technology is helping society to connect to each other using the cellular devices, computers and social media applications such as snapchat, what's app, facebook and tweeter. Technology through web pages and search engines is helping people belong to different societies to make research and help people belong to their social circle. Technology is helping people to adopt the culture of different nations to show unity. Technological advance is converting the concept of society from being interaction between the people of a group or a area to the connection between the people around the globe through social media. Within improving lifestyle and making a strong connection of people, technology have also affected some peoples negatively. The relationship of society and technology is affected when ethics of using technology are ignored by the user. Technological ethics does not force a human to stay away from using some applications on social media instead it gives the ability to the user to distinguish between right and wrong. Ethics do make user to encourage if find someone is doing right and discourage if something is misrepresented. The one biggest negativity of social media is that people do connect to the people they do not know. Wrong people being on social media is leading to fraud, identity theft, scamming, and much more. In some situations negativity of social media causes people to be depressed or commit suicide. The ethical demand is to whenever someone's negativity is identified through their, actions we should report it the same manner if we saw someone doing wrong around us and report it. This action would save technological society from the harmful effects and make stronger relationship of society and technology.

See also[edit]

References[edit]

  1. ^ Catching Fire: How Cooking Made Us Human
  2. ^ a b (Puricelli 2011, p. 4)
  3. ^ (Rückriem 2009, p. 88)
  4. ^ (Katz 2010, p. 185)
  5. ^ Lynden, Burke. "Generation Y Heavily Dependent On Technology, Promotes Laziness". The Jambar. Retrieved 28 October 2015.
  6. ^ Woollaston, Victoria. "Kids ARE growing up faster today – and it's all down to technology". Daily Mail. Retrieved 28 October 2015.
  7. ^ Saudi med J. 2016 pages 436–439
  8. ^ See, e.g., Andrey Korotayev, Artemy Malkov, and Daria Khaltourina. Introduction to Social Macrodynamics: Compact Macromodels of the World System Growth ISBN 5-484-00414-4
  9. ^ [1] Archived July 23, 2006, at the Wayback Machine
  10. ^ (McGinn 1991)
  11. ^ Galtung, Johan. "Prabhat rainjan sarkar's social cycles, world unity and peace; Renaissance 2000 honoring Sarkar's 75th Anniversary, LA 1". Metafuture.org. Retrieved July 6, 2016.
  12. ^ (Williams & Edge 1996)
  13. ^ (McGinn 1991, p. 73)
  14. ^ cf Karl Marx, Capital, Volume I
  15. ^ https://www.irishtimes.com/news/expert-stresses-designs-which-are-orientated-towards-people-1.82744 | Expert stresses designs which are orientated towards people by Carol Coulter
  16. ^ "Technology studies", Wikipedia, 2019-04-08, retrieved 2019-07-25

https://books.google.com/books?id=vmInVZOTLH8C&printsec=frontcover&dq=technology+and+society&hl=en&sa=X&ved=0ahUKEwjUjvaUwc7jAhVqU98KHRcKAW0Q6AEILjAB#v=onepage&q=technology%20and%20society&f=false


  • Volti, Rudi (2017). society and technological change. New York: Worth. p. 3. ISBN 9781319058258.

Further reading[edit]

External links[edit]