Mars 2020

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Mars 2020
Mars 2020 Rover - Artist's Concept.png
Computer-design drawing for NASA's 2020 Mars Rover
Mission typeRover
OperatorNASA / JPL
Mission durationPlanned: 1 Mars year (668 sols)[1]
Spacecraft properties
ManufacturerJet Propulsion Laboratory
Launch massRover: 1,050 kg (2,315 lb)[2]
DimensionsRover: 3 × 2.7 × 2.2 m (9.8 × 8.9 × 7.2 ft)[2]
Power110 watts (0.15 hp)[3]
Start of mission
Launch date17 July to 5 August 2020[4]
RocketAtlas V 541[5]
Launch siteCape Canaveral SLC-41
Mars rover
Spacecraft componentRover
Landing date18 February 2021[4]
Landing siteJezero crater
Mars 2020 JPL insignia.svg
Jet Propulsion Laboratory insignia  

Mars 2020 is a Mars rover mission by NASA's Mars Exploration Program with a planned launch on 17 July 2020, and touch down in Jezero crater on Mars on 18 February 2021.[6][7] It will investigate an astrobiologically relevant ancient environment on Mars and investigate its surface geological processes and history, including the assessment of its past habitability, the possibility of past life on Mars, and the potential for preservation of biosignatures within accessible geological materials.[8][9] It will cache sample containers along its route for a potential future Mars sample-return mission.[9][10][11]

The currently unnamed Mars 2020 mission was announced by NASA on 4 December 2012 at the fall meeting of the American Geophysical Union in San Francisco.[12] The rover's design is derived from the Curiosity rover, and will use many components already fabricated and tested, new scientific instruments and a core drill.[13] It will also carry a helicopter drone.

NASA announced in June 2019 that a student naming contest will be held in fall of 2019 to determine the name of the rover.[14]

Mission overview[edit]

An artist's concept of the Mars 2020 rover

The mission will seek signs of habitable conditions on Mars in the ancient past, and will also search for evidence—or biosignatures—of past microbial life. The rover is planned for launch in 2020 on an Atlas V-541,[12] and the Jet Propulsion Laboratory will manage the mission. The mission is part of NASA's Mars Exploration Program.[15][16][17][10]

The Science Definition Team proposed that the rover collect and package as many as 31 samples of rock cores and surface soil for a later mission to bring back for definitive analysis on Earth. In 2015 they expanded the concept, planning to collect even more samples and distribute the tubes in small piles or caches across the surface of Mars.[18]

In September 2013 NASA launched an Announcement of Opportunity for researchers to propose and develop the instruments needed, including the Sample Caching System.[19][20] The science instruments for the mission were selected in July 2014 after an open competition based on the scientific objectives set one year earlier.[21][22] The science conducted by the rover's instruments will provide the context needed for detailed analyses of the returned samples.[23] The chairman of the Science Definition Team stated that NASA does not presume that life ever existed on Mars, but given the recent Curiosity rover findings, past Martian life seems possible.[23]


The Mars 2020 rover will explore a site likely to have been habitable. It will seek signs of past life, set aside a returnable cache with the most compelling rock core and soil samples, and demonstrate technology needed for the future human and robotic exploration of Mars.

A key mission requirement is that it must help prepare NASA for its long-term Mars sample-return mission and crewed mission efforts.[9][10][11] The rover will make measurements and technology demonstrations to help designers of a future human expedition understand any hazards posed by Martian dust, and will test technology to produce a small amount of pure oxygen (O
) from Martian atmospheric carbon dioxide (CO
).[24] Improved precision landing technology that enhances the scientific value of robotic missions also will be critical for eventual human exploration on the surface.[25] Based on input from the Science Definition Team, NASA defined the final objectives for the 2020 rover. Those become the basis for soliciting proposals to provide instruments for the rover's science payload in the spring of 2014.[24]

The mission will also attempt to identify subsurface water, improve landing techniques, and characterize weather, dust, and other potential environmental conditions that could affect future astronauts living and working on Mars.[26]


The Powered Descent Vehicle, part of the sky crane landing system

The three major components of the Mars 2020 spacecraft are the cruise stage for travel between Earth and Mars; the Entry, Descent, and Landing System (EDLS) that includes the aeroshell, parachute, descent vehicle, and sky crane; and the rover. The rover is based on the design of Curiosity.[12] While there are differences in scientific instruments and the engineering required to support them, the entire landing system (including the sky crane and heat shield) and rover chassis can essentially be recreated without any additional engineering or research. This reduces overall technical risk for the mission, while saving funds and time on development.[27] One of the upgrades is a guidance and control technique called "Terrain Relative Navigation" (TRN) to fine-tune steering in the final moments of landing.[28][29] This system will allow for a landing accuracy within 40 m (130 ft) and avoid obstacles.[30] This is a marked improvement from the Mars Science Laboratory mission that had an elliptical area of 7 by 20 km (4.3 by 12.4 mi).[31]

In October 2016, NASA reported using the Xombie rocket to test the Lander Vision System (LVS), as part of the Autonomous Descent and Ascent Powered-flight Testbed (ADAPT) experimental technologies, for the Mars 2020 mission landing, meant to increase the landing accuracy and avoid obstacle hazards.[32][33] A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), left over as a backup part for Curiosity during its construction, will power the rover.[12][34]

The generator has a mass of 45 kilograms (99 lb) and uses 4.8 kilograms (11 lb) of plutonium dioxide as the source of steady supply of heat that is converted to electricity.[3] The electrical power generated is approximately 110 watts at launch with little decrease over the mission time.[3] Two lithium-ion rechargeable batteries are included to meet peak demands of rover activities when the demand temporarily exceeds the MMRTG's steady electrical output levels. The MMRTG offers a 14-year operational lifetime, and it was provided to NASA by the US Department of Energy.[3] Unlike solar panels, the MMRTG provides engineers with significant flexibility in operating the rover's instruments even at night and during dust storms, and through the winter season.[3]

Engineers redesigned the Mars 2020 rover wheels to be more robust than Curiosity's wheels, which have sustained some damage.[35] The rover will have thicker, more durable aluminum wheels, with reduced width and a greater diameter (52.5 cm, 20.7 in) than Curiosity's 50 cm (20 in) wheels.[36][37] The aluminum wheels are covered with cleats for traction and curved titanium spokes for springy support.[38] The combination of the larger instrument suite, new Sampling and Caching System, and modified wheels makes Mars 2020 heavier than its predecessor, Curiosity,[37] by 17% (1050 kg to 899 kg).

The rover will include a five-jointed robotic arm measuring 7 feet (2.1 m) long. The arm will be used in combination with a turret to analyze geologic samples from the Martian surface.[39]

The rover mission and launch are estimated to cost about US$2.1 billion.[40] The mission's predecessor, the Mars Science Laboratory, cost US$2.5 billion in total.[12] The availability of spare parts make the new rover somewhat more affordable. Curiosity's engineering team are also involved in the rover's design.[12][41]

Scientific instruments[edit]

Locations of the Mars 2020 rover science payload

Based on the scientific objectives, nearly 60 proposals[42][43] for rover instrumentation were evaluated and, on 31 July 2014, NASA announced the payload for the rover.[21][44]

Mars 2020 rover instruments
23 cameras
Solar powered helicopter drone to be tested as navigation aid
Proposed adaptive caching for sample return


Mars 2020 assembly (2019)
Separation test
In-depth cleaning
Probe test
Helicopter attachment to the underside of the rover
Helicopter and team members
Helicopter adjustments
Installing HD cameras
Mast top
Eye chart
Testing vision
Rover on stand
Bit carousel lift
Bit carousel assembly
Clean room
Rover wheels
Power system
Inverted body wiring

Landing site[edit]

The Jezero crater is the planned landing site for the Mars 2020 rover.[6][7] The following locations are the final eight proposed landing sites that were under consideration by September 2015:[63]

A workshop was held on 8–10 February 2017 in Pasadena, California, to discuss these sites, with the goal of narrowing down the list to three sites for further consideration.[66] The three sites were:[67]

Jezero crater was selected in November 2018, mostly because it was a 250 m (820 ft) deep lake about 3.9 billion to 3.5 billion years ago, and it features a prominent river delta where water flowing through it deposited lots of sediment over the eons, which is "extremely good at preserving biosignatures".[6][7] The sediments likely include carbonates and hydrated silica, known to preserve microscopic fossils on Earth for billions of years.[68]

Jezero and surrounding region
Jezero crater on Mars - ancient rivers (on the left) fed the crater; overflow flooding carved the outlet canyon (on the right )
Ancient shoreline, and planned landing ellipse for the Mars 2020 mission
Minerals (green=carbonates; red=olivine sand eroding from carbonate-containing rocks)
Jezero delta – chemical alteration by water

Proposed sample-return[edit]

Sample-return mission concept of Mars Ascent Vehicle (MAV)

A key mission requirement for this rover is that it must help prepare NASA for its Mars sample-return mission (MSR) campaign,[40][71][72] which is needed before any crewed mission takes place.[9][10][11] Such effort would require three additional vehicles: an orbiter, a fetch rover, and a Mars ascent vehicle (MAV).

Dozens of samples would be collected and cached by the Mars 2020 rover, and would be left on the surface of Mars for possible later retrieval.[72] A "fetch rover" would retrieve the sample caches and deliver them to a Mars ascent vehicle (MAV). In July 2018 NASA contracted Airbus to produce a "fetch rover" concept study.[73] The MAV would launch from Mars and enter a 500 km orbit and rendezvous with a new Mars orbiter.[72] The sample container would be transferred to an Earth entry vehicle (EEV) which would bring it to Earth, enter the atmosphere under a parachute and hard-land for retrieval and analyses in specially designed safe laboratories.[71][72]

Mission timeline[edit]

The mission has a current launch window of 17 July to 5 August 2020, where the positions of Earth and Mars are optimal for traveling to Mars. The rover is scheduled to land on Mars on 18 February 2021, with a planned surface mission of at least 1 Mars year (668 sols or 687 Earth days).[4]

Mars 2020 mission timeline (as of July 2013) - mass now 1050 kg


Acheron FossaeAcidalia PlanitiaAlba MonsAmazonis PlanitiaAonia PlanitiaArabia TerraArcadia PlanitiaArgentea PlanumArgyre PlanitiaChryse PlanitiaClaritas FossaeCydonia MensaeDaedalia PlanumElysium MonsElysium PlanitiaGale craterHadriaca PateraHellas MontesHellas PlanitiaHesperia PlanumHolden craterIcaria PlanumIsidis PlanitiaJezero craterLomonosov craterLucus PlanumLycus SulciLyot craterLunae PlanumMalea PlanumMaraldi craterMareotis FossaeMareotis TempeMargaritifer TerraMie craterMilankovič craterNepenthes MensaeNereidum MontesNilosyrtis MensaeNoachis TerraOlympica FossaeOlympus MonsPlanum AustralePromethei TerraProtonilus MensaeSirenumSisyphi PlanumSolis PlanumSyria PlanumTantalus FossaeTempe TerraTerra CimmeriaTerra SabaeaTerra SirenumTharsis MontesTractus CatenaTyrrhen TerraUlysses PateraUranius PateraUtopia PlanitiaValles MarinerisVastitas BorealisXanthe TerraMap of Mars
The image above contains clickable linksInteractive image map of the global topography of Mars, overlain with locations of Mars landers and rovers. Hover your mouse over the image to see the names of over 60 prominent geographic features, and click to link to them. Coloring of the base map indicates relative elevations, based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. Whites and browns indicate the highest elevations (+12 to +8 km); followed by pinks and reds (+8 to +3 km); yellow is 0 km; greens and blues are lower elevations (down to −8 km). Axes are latitude and longitude; Polar regions are noted.
(   Rover  Lander  Future )
Beagle 2
Bradbury Landing
Deep Space 2
Columbia Memorial Station
InSight Landing
Mars 2020
Mars 2
Mars 3
Mars 6
Mars Polar Lander
Challenger Memorial Station
Green Valley
Schiaparelli EDM lander
Carl Sagan Memorial Station
Columbia Memorial Station
Thomas Mutch Memorial Station
Gerald Soffen Memorial Station

See also[edit]


  1. ^ "Mission: Overview". NASA. Retrieved 7 March 2015.
  2. ^ a b "Designing A Mars Rover To Launch in 2020". NASA/JPL. Retrieved 6 July 2018.
  3. ^ a b c d e "Mars 2020 Rover Tech Specs". JPL/NASA. Retrieved 6 July 2018.
  4. ^ a b c "Overview - Mars 2020 Rover". Retrieved 19 February 2019.
  5. ^ Ray, Justin (25 July 2016). "NASA books nuclear-certified Atlas 5 rocket for Mars 2020 rover launch". Spaceflight Now. Retrieved 26 July 2016.
  6. ^ a b c Chang, Kenneth (19 November 2018). "NASA Mars 2020 Rover Gets a Landing Site: A Crater That Contained a Lake - The rover will search the Jezero Crater and delta for the chemical building blocks of life and other signs of past microbes". The New York Times. Retrieved 21 November 2018.
  7. ^ a b c Wall, Mike (19 November 2018). "Jezero Crater or Bust! NASA Picks Landing Site for Mars 2020 Rover". Retrieved 20 November 2018.
  8. ^ Chang, Alicia (9 July 2013). "Panel: Next Mars rover should gather rocks, soil". Associated Press. Retrieved 12 July 2013.
  9. ^ a b c d Schulte, Mitch (20 December 2012). "Call for Letters of Application for Membership on the Science Definition Team for the 2020 Mars Science Rover" (PDF). NASA. NNH13ZDA003L.
  10. ^ a b c d "Summary of the Final Report" (PDF). NASA / Mars Program Planning Group. 25 September 2012.
  11. ^ a b c Moskowitz, Clara (5 February 2013). "Scientists Offer Wary Support for NASA's New Mars Rover". Retrieved 5 February 2013.
  12. ^ a b c d e f Harwood, William (4 December 2012). "NASA announces plans for new $1.5 billion Mars rover". CNET. Retrieved 5 December 2012. Using spare parts and mission plans developed for NASA's Curiosity Mars rover, Ronnie Pickering says it can launch the rover in 2020 and stay within current budget guidelines.
  13. ^ Amos, Jonathan (4 December 2012). "Nasa to send new rover to Mars in 2020". BBC News. Retrieved 5 December 2012.
  14. ^ "NASA Selects Partners for Mars 2020 "Name the Rover" Contest, Seeks Judges". NASA. 25 June 2019. Retrieved 2 July 2019.
  15. ^ "Program And Missions – 2020 Mission Plans". NASA. 2015.
  16. ^ Mann, Adam (4 December 2012). "NASA Announces New Twin Rover for Curiosity Launching to Mars in 2020". Wired. Retrieved 5 December 2012.
  17. ^ Leone, Dan (3 October 2012). "Mars Planning Group Endorses Sample Return". SpaceNews.
  18. ^ Davis, Jason (28 August 2017). "NASA considers kicking Mars sample return into high gear". The Planetary Society.
  19. ^ "Announcement of Opportunity: Mars 2020 Investigations" (PDF). NASA. 24 September 2013. Retrieved 18 May 2014.
  20. ^ "Mars 2020 Mission: Instruments". NASA. 2013. Retrieved 18 May 2014.
  21. ^ a b Brown, Dwayne (31 July 2014). "RELEASE 14-208 – NASA Announces Mars 2020 Rover Payload to Explore the Red Planet as Never Before". NASA. Retrieved 31 July 2014.
  22. ^ "Objectives – 2020 Mission Plans". Retrieved 4 December 2015.
  23. ^ a b "Science Team Outlines Goals for NASA's 2020 Mars Rover". Jet Propulsion Laboratory. NASA. 9 July 2013. Retrieved 10 July 2013.
  24. ^ a b Klotz, Irene (21 November 2013). "Mars 2020 Rover To Include Test Device To Tap Planet's Atmosphere for Oxygen". SpaceNews. Retrieved 22 November 2013.
  25. ^ Bergin, Chris (2 September 2014). "Curiosity EDL data to provide 2020 Mars Rover with super landing skills". Retrieved 3 September 2014.
  26. ^ "Mars 2020 Rover - Overview". NASA/JPL. Retrieved 6 July 2018.
  27. ^ Dreier, Casey (10 January 2013). "New Details on the 2020 Mars Rover". The Planetary Society. Retrieved 15 March 2013.
  28. ^ Agle, DC (1 July 2019). "A Neil Armstrong for Mars: Landing the Mars 2020 Rover". NASA. Retrieved 1 July 2019.
  29. ^ "Mars 2020 Rover: Entry, Descent, and Landing System". NASA. July 2016. Retrieved 17 July 2016.
  30. ^ Here’s an example of the crazy lengths NASA goes to land safely on Mars. Eric Berger, Ars Technica. 7 October 2019.
  31. ^ "NASA Mars Rover Team Aims for Landing Closer to Prime Science Site". NASA/JPL. Retrieved 15 May 2012.
  32. ^ Williams, Leslie; Webster, Guy; Anderson, Gina (4 October 2016). "NASA Flight Program Tests Mars Lander Vision System". NASA. Retrieved 5 October 2016.
  33. ^ Fresh Eyes on Mars: Mars 2020 Lander Vision System Tested through NASA's Flight Opportunities Program Oct 2016
  34. ^ Boyle, Alan (4 December 2012). "NASA plans 2020 Mars rover remake". Cosmic Log. NBC News. Retrieved 5 December 2012.
  35. ^ Lakdawalla, Emily (19 August 2014). "Curiosity wheel damage: The problem and solutions". The Planetary Society Blogs. The Planetary Society. Retrieved 22 August 2014.
  36. ^ Gebhardt, Chris. "Mars 2020 rover receives upgraded eyesight for tricky skycrane landing". Retrieved 11 October 2016.
  37. ^ a b "Mars 2020 - Body: New Wheels for Mars 2020". NASA/JPL. Retrieved 6 July 2018.
  38. ^ "Mars 2020 Rover - Wheels". NASA. Retrieved 9 July 2018.
  39. ^ "Mars 2020 Rover's 7-Foot-Long Robotic Arm Installed". 28 June 2019. Retrieved 1 July 2019. The main arm includes five electrical motors and five joints (known as the shoulder azimuth joint, shoulder elevation joint, elbow joint, wrist joint and turret joint). Measuring 7 feet (2.1 meters) long, the arm will allow the rover to work as a human geologist would: by holding and using science tools with its turret, which is essentially its "hand."
  40. ^ a b Foust, Jeff (20 July 2016). "Mars 2020 rover mission to cost more than $2 billion". SpaceNews.
  41. ^ Wall, Mike (4 December 2012). "NASA to Launch New Mars Rover in 2020". Retrieved 5 December 2012.
  42. ^ Webster, Guy; Brown, Dwayne (21 January 2014). "NASA Receives Mars 2020 Rover Instrument Proposals for Evaluation". NASA. Retrieved 21 January 2014.
  43. ^ Timmer, John (31 July 2014). "NASA announces the instruments for the next Mars rover". ARS Technica. Retrieved 7 March 2015.
  44. ^ Brown, Dwayne (31 July 2014). "NASA Announces Mars 2020 Rover Payload to Explore the Red Planet as Never Before". NASA. Retrieved 31 July 2014.
  45. ^ a b Webster, Guy (31 July 2014). "Mars 2020 Rover's PIXL to Focus X-Rays on Tiny Targets". NASA. Retrieved 31 July 2014.
  46. ^ "Adaptive sampling for rover x-ray lithochemistry" (PDF). Archived from the original (PDF) on 8 August 2014.
  47. ^ "RIMFAX, The Radar Imager for Mars' Subsurface Experiment". NASA. July 2016. Retrieved 19 July 2016.
  48. ^ Chung, Emily (19 August 2014). "Mars 2020 rover's RIMFAX radar will 'see' deep underground". Canadian Broadcasting Corp. Retrieved 19 August 2014.
  49. ^ U of T scientist to play key role on Mars 2020 Rover Mission
  50. ^ In-Situ Resource Utilization (ISRU). GCD-NASA.
  51. ^ Borenstein, Seth (31 July 2014). "NASA to test making rocket fuel ingredient on Mars". Associated Press. Retrieved 31 July 2014.
  52. ^ Webb, Jonathan (1 August 2014). "Mars 2020 rover will pave the way for future manned missions". BBC News. Retrieved 1 August 2014.
  53. ^ "NASA Administrator Signs Agreements to Advance Agency's Journey to Mars". NASA. 16 June 2015.
  54. ^ a b Webster, Guy (31 July 2014). "SHERLOC to Micro-Map Mars Minerals and Carbon Rings". NASA. Retrieved 31 July 2014.
  55. ^ "SHERLOC: Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals, an Investigation for 2020" (PDF).
  56. ^ Mars Helicopter to Fly on NASA’s Next Red Planet Rover Mission. NASA News. 11 May 2018.
  57. ^ "Mars mission readies tiny chopper for Red Planet flight". BBC News. 29 August 2019.
  58. ^ Chang, Kenneth. "A Helicopter on Mars? NASA Wants to Try". The New York Times. Retrieved 12 May 2018.
  59. ^ Gush, Loren (11 May 2018). "NASA is sending a helicopter to Mars to get a bird's-eye view of the planet - The Mars Helicopter is happening, y'all". The Verge. Retrieved 11 May 2018.
  60. ^ "Microphones on Mars 2020". NASA. Retrieved 3 December 2019.
  61. ^ Strickland, Ashley (15 July 2016). "New Mars 2020 rover will be able to 'hear' the Red Planet". CNN News. Retrieved 16 July 2016.
  62. ^ "NASA's 2020 Mars rover to have 23 'eyes'". The Times of India. Press Trust of India. 1 November 2017.
  63. ^ Farley, Ken (8 September 2015). "Researcher discusses where to land Mars 2020". Retrieved 9 September 2015.
  64. ^ Hand, Eric (6 August 2015). "Mars scientists tap ancient river deltas and hot springs as promising targets for 2020 rover". Science News. Science News. Retrieved 7 August 2015.
  65. ^ a b "PIA19303: A Possible Landing Site for the 2020 Mission: Jezero Crater". NASA. 4 March 2015. Retrieved 7 March 2015.
  66. ^ "2020 Landing Site for Mars Rover Mission". NASA / Jet Propulsion Laboratory. Retrieved 12 February 2017.
  67. ^ Witze, Alexandra (11 February 2017). "Three sites where NASA might retrieve its first Mars rock". Nature. Bibcode:2017Natur.542..279W. doi:10.1038/nature.2017.21470. Retrieved 12 February 2017.
  68. ^ The Mars 2020 rover will visit the perfect spot to find signs of life, new studies show. Sarah Kaplan, The Washington Post. 16 November 2019.
  69. ^ Goudge, Timothy A.; Mustard, John F.; Head, James W.; Fassett, Caleb I.; Wiseman, Sandra M. (6 March 2015). "Assessing the Mineralogy of the Watershed and Fan Deposits of the Jezero Crater Paleolake System, Mars". Journal of Geophysical Research. 120 (4): 775. Bibcode:2015JGRE..120..775G. doi:10.1002/2014JE004782.
  70. ^ Wray, James (6 June 2008). "Channel into Jezero Crater Delta". NASA. Retrieved 6 March 2015.
  71. ^ a b Evans, Kim (13 October 2015). "NASA Eyes Sample-Return Capability for Post-2020 Mars Orbiter". Denver Museum of Nature and Science. Retrieved 10 November 2015.
  72. ^ a b c d Mattingly, Richard (March 2010). "Mission Concept Study: Planetary Science Decadal Survey - MSR Orbiter Mission (Including Mars Returned Sample Handling)" (PDF). NASA.
  73. ^ Amos, Jonathan (6 July 2018). "Fetch rover! Robot to retrieve Mars rocks". BBC News. Retrieved 9 July 2018.

External links[edit]